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(U.S. Geological Survey, Tacoma, Washington, U.S.A.)

ABSTRACT. Ice velocity, net mass budget and surface elevation change data were collected over the length
and width of a small (3-4 km. long) valley glacier from 1957 to 1964. Ice velocities range up to about
20 m.[yr.; three prominent velocity maxima along the length of the glacier correspond to maxima in surface
slope. Net mass budgets averaged over the glacier surface range between —3-3 m. of water equivalent
(1957-58) and +1-2 m. (1963-64). Except for the year 1960-61, curves of net budget versus altitude are
parallel. During the period 1958-61 the glacier became thinner at a rate averaging 0-93 m./yr. The net
budget and thinning data are internally consistent. Relations between emergence velocity, net budget and
surface elevation change are examined at four specific points on the glacier surface and as functions of
distance along the length of the glacier. Emergence velocity averages about —o-5 m. in the upper part of
the glacier and about +41-0m. in the lower part. Ice discharge and ice thickness are also calculated as
functions of distance. The discharge reaches a peak of 8-8 x 105 m.3 of ice per year 2.2 km. from the head
of the glacier. The mean thickness of the glacier is about 83 m. A steady-state distribution of net budget is
used to calculate a steady-state discharge, which is 2-2 times larger than the present discharge.

RisumE. Bilan de masse et écoulement de South Cascade Glacier, Washington. Les données sur la vitesse de la
glace, le bilan de masse et la variation altimétrique de la surface ont été collectées de 1957 a 1964 le long et
au travers d’un petit glacier de vallée (longueur 3,4 km). Les vitesses atteignent environ 20 m/an; trois
maxima bien marqués des vitesses le long d’un profil longitudinal correspondent a ceux de la pente super-
ficielle. Les bilans de masse moyennés pour la surface du glacier se tiennent entre —3,5 m d’équivalent en
eau (1957-58) et +-1,2m (1963-64). Excepté pour I’année 1960-61, les courbes du bilan de masse en
fonction de I'altitude étaient paralléles. Pendant la période 1958-61, I’épaisseur du glacier diminua d’une
valeur moyenne de 0,93 m/an. Les bilans de masse et les données de diminution d’épaisseur se tiennent. Les
relations entre les vitesses d’émergence, le bilan de masse et les variations altimétriques de la surface ont été
examinées en quatre points spécifiques de la surface du glacier en fonction de distances longitudinales. La
moyenne des vitesses d’émergence est de —0,5 m dans la partie supérieure, et de 1,0 m dans la partie basse
du glacier. Le débit et I’épaisseur de la glace sont aussi calculés en fonction des distances longitudinales. Le
débit présente une pointe de 8,8 X 105 km3 de glace par an a 2,2 km de la téte du glacier. L’épaisseur moyenne
du glacier est de 83 m environ. Une distribution du bilan de masse d’un glacier en régime permanent a été
utilisée pour calculer le débit correspondant qui s’est avéré étre 2,2 fois plus grand que le débit actuel.

ZUSAMMENFASSUNG. Netto-Haushalt und Bewegung am South Cascade Glacier, Washington. Von 1957 bis 1960
wurden tiber die Lange und Breite eines kleinen Talgletschers (Lénge 3,4 km) die Fliessgeschwindigkeit, der
Netto-Haushalt und die Hohenanderungen der Oberfliche beobachtet. Die Fliessgeschwindigkeit erreicht
bis etwa 20 m/Jahr; drei ausgesprochene Geschwindigkeitsmaxima in der Lingsachse des Gletschers
entsprechen den Maxima in der Oberflichenneigung. Der Netto-Massenhaushalt schwankte im Mittel iiber
die Gletscheroberfliche zwischen — 3,3 m Wasserwert (1957-58) und 1,2 m (1963-64). Ausser im Jahre
1960-61, liefert die Hohenabhéngigkeit des Netto-Haushaltes eine Schar paralleler Kuryen. In der Periode
1958-61 wurde der Gletscher pro Jahr durchschnittlich um 0,93 m diinner. Die Werte fiir den Netto-Haushalt
passen mit denen des Massenverlustes zusammen. Die Beziehungen zwischen der Emergenzegeschwindigkeit,
dem Netto-Haushalt und der Hohenidnderung der Oberfliche werden an 4 ausgewzhlten Punkten der
Oberflache und in Abhingigkeit von der Entfernung entlang der Gletscherachse untersucht. Die Emergenze-
geschwindigkeit betrdgt im Mittel ca. —0,5 m im oberen Teil und ca. + 1,0 m im unteren Teil des Gletschers.
Eisdurchfluss und Eisdicke werden ebenfalls in Abhangigkeit von der Entfernung berechnet. Der Durchfluss
erreicht ein Maximum von 8,8 X 105 m? Eis pro Jahr 2,2 km oberhalb des Gletscherendes. Die mittlere Dicke
des Gletschers ist ungefihr 83 m. Mit einer stationdren Verteilung des Netto-Haushaltes ergibt sich rechnerisch
ein stationarer Durchfluss, der 2,2 mal grésser ist als der derzeitige Durchfluss.

INTRODUCTION

The sensitive response of some glaciers to subtle changes in climate has long been of interest
to glaciologists and palaeoclimatologists. A complete explanation of the response of a glacier
to a change in climate has been slow in coming because of difficult problems in theoretical
analysis and in field data collection. Recent theoretical work on traveling or kinematic waves
(Weertman, 1958; Nye, 1958, 1960) provides new insight into the mechanism which controls
the dynamic response to a small perturbation of climate. A critical aspect of this approach—
that of accounting for diffusion in the wave equations—has been fruitfully analyzed by Nye
(1963al, [b])- '

The relation of glaciers to climate has two aspects: (1) climatic elements (through accumu-
lation and ablation) produce time and space variations in the net mass budgct of a glacier,
and (2) these variations of net mass budget cause changes in the thickness, rate of flow, and
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of a glacier to climatic change, for, as Nye ( 1963[a], [b]) has shown, changes at the terminus
of a glacier are result of complicated interactions extending throughout the length of the
glacier.,

Another difficulty with many attempts to compare flow and mags budget results is the
problem of demonstrating the validity of mags budget data on an absolute (tota] volume or

techniques. In principle, it is possible to obtain mass budget data ip four different and
independent ways: (1) direct measurement of zqgy budget quantities at points on the glacier
surface, (2) measurement of volumetrie changes (e.g. by comparing precise topographic maps),

This Paper reports on one aspect of the larger South Cascade Glacier Project, which was
begun as 5 long-term endeavor by the U.S. Geological Survey in 1957. The project was
designed to be a completely integrated study of al] macroscopic aspects of the relation of
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velocity, net mass budget, and changes in the volume and shape of the glacier, after which the
interrelations between these three aspects and the present non-steady state of the glacier are
discussed.

GENERAL DESCRIPTION

South Cascade Glacier is a small, relatively inconspicuous valley glacier (Fig. 1) in the

Fig. 1. Aerial oblique photograph of South Cascade Glacier, 27 September 1960. View is toward the south. (Photograph by
Austin S. Post)
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above 2,100 m. during the period 1953-64; its mean altitude for the period was about
1,900 m. This glacier lies at a lower altitude than most glaciers in the North Cascade Range.
Most glaciers in the North Cascade Range and especially those at higher altitudes were
actively advancing or in a near-equilibrium condition from 1953 to 1961 (Hubley, 1956,
p- 670-71; Meier and Post, 1962, p. 71). South Cascade Glacier, however, has been retreating
continuously for many years.

SurRrFACE VELOCITY

Conventional triangulation surveys of markers emplaced in the ice or snow surface vielded
values of ice velocity at 49 places. Markers of many typeswere used for velocity measurements:
wood, plastic and aluminum poles, ranging in diameter from 1 ‘9 to 4°4 cm. and in length
from 1-8 to 7-6 m. In the accumulation area, great difficulty was experienced in preventing
the wintertime destruction of velocity stakes due to creep of the thick heavy snow pack.
Consequently, more velocity data are available from flat areas where there is less snow creep
than are available from the steeper slopes of the glacier. Four markers were specially designed
aluminum towers, 12-2 m. or more in height, 10 cm. in diameter at the base and designed
to withstand winds in excess of 50 m.[sec. without the use of guy wires. The stakes were
triangulated with a one-second theodolite utilizing 10 points attached to bedrock around the
margin of the glacier. The theodolite point locations are indicated in Figure 2.

A curving coordinate system* (Fig. 2) was designed so that longitudinal and transverse
components of velocity could be calculated. The center line for this coordinate system (the
x-axis) is horizontal and is directed down-glacier approximately through the map projections
of the zones of highest surface velocity. In general, there are weak or unnoticeable transverse
changes in velocity in the vicinity of this center line so that crevasses are either perpendicular

,or parallel to the center line. The y-axis is perpendicular to the curving x-axis and is positive

to the right as viewed on a map. Therefore, values of x generally increase to the north-west
and values of y generally increase to the north-east. The z-axis is defined as positive upwards,
making a right-handed coordinate system. Ice velocity components of #, v and w were resolved
parallel to the x, y and z coordinates, respectively.

Some results of the velocity measurements are shown in Figures 2 and 3 and are listed in
Table I. In Table I, ¢, and ¢4 indicate the times of surveys used for a given velocity determina-
tion. Standard errors in « and w (oy and o) are also indicated on Table I and Figure 3.
These values of standard error were computed individually for each survey and each velocity
computation. The net standard error is the square root of the sum of the squares of the
measured or estimated standard errors due to the triangulation geometry, survey distances,
consistency of measurements, resetting or creep of stakes, the time element involved, and finally
certain characteristics of the velocity stake itself. Every effort was made to include all possible
sources of imprecision.

Lines showing equal values of the velocity component  are given in Figure 2. These were
drawn utilizing not only the measured velocities but also some information on surface slope,
crevasse directions and rates of opening or closing of structures in the ice. The surface velocity
averaged over the width of the glacier (%) was determined from this map and a number of
transverse profiles. Standard errors of « (o) and # (o) are shown in Figure 3.

* The coordinate system was constructed by drawing a curving x-axis and then measuring y distances perpen-
dicular to it. Therefore, it is not a true curvilinear coordinate system except in the immediate vicinity of the x-axis.
This coordinate scheme is mainly used for locating points on the glacier and to define glacier widths along which
various parameters can be averaged. In some situations use was made of the assumption that

JadS= [[adydx
in order to obtain an area (S) average of some value (z). These two expressions are not strictly equivalent for a
curving coordinate system. However, the computations were frequently performed using both expressions and
the differences were insignificant.
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TapLe I. RESULTS OF VELOCITY MEASUREMENTS MADE AT SOUTH CAsCADE GLAGIER, 195762

Stake Ta
aumber Date

1 24 July 1957

2 18 July 1958

3 24 July 1957

4 18 July 1958

5 24 July 1957

6 18 July 1958

i 18 July 1957

8 18 July 1958

9 24 July 1957
10 6 September 1961
11 4 August 1961
12 4 August 1961
13 18 July 1957
14 18 July 1958
15 1 September 1959
16 22 September 1960
17 4 August 1961
18 22 September 1960
19 22 September 1960
20 7 October 1961
21 18 July 1957
22 7 October 1961
23 7 October 1961
24 10 August 1959
25 4 August 1961
26 7 October 1961
27 4 August 1961
28 7 October 1961
20 4 August 1961
30 4 August 1961
31 7 October 1961
32 18 July 1957
33 18 July 1957
34 18 July 1957
35 20 July 1957
36 2 October 1959
97 21 September 1960
38 4 September 1961
39 9 July 1962
40 g July 1962
41 2 October 1959
42 9 July 1962
43 20 July 1957
44 4 September 1961
45 9 July 1962
46 9 July 1962
47 9 September 1959
48 4 September 1961
49 9 July 1957

ty
Date

18 July 1958
9 August 1959
18 August 1958

9 July 1959

18 July 1958

9 August 1959
18 July 1958

1 September 1959
18 July 1958
18 June 1962

7 October 1961
7 October 1961
18 July 1958
1 September 1959
22 September 1960

5 August 1961
7 October 1961
5 August 1961
5 August 1961
29 August 1962

18 July 1958
23 August 1962
23 August 1962
21 September 1960
7 October 1961

23 August 1962
7 October 1961
23 August 1962
7 October 1961
7 October 1961

23 August 1962
20 July 1958
20 July 1958
20 July 1958
20 July 1958

7 October 1961
8 August 1961
9 July 1962
4 September 1962
9 September 1962

7 October 1961
g September 1962
20 July 1958
9 July 1962
9 September 1962

9 September 1962
21 September 1960
9 July 1962
20 July 1958

X
m.

3,479
3,490
shasa
3,453
3,455

3,467
3,420
3,261

2,963

. 2,960

2,679
2’713
2,705
2,728
2,774

2,789
2,774
2,743
2,759
2,751

2,710
2,746
2,743
2,740
2,713

2,749
2,758
2,621
2,591
2,560

2,618
2,446
2,435
2,438
2,423

1,995
2,036
2,015
2,024
1 3719

1,664
1,591
I ’4’7 I
1,234
1,204

15044’
632
707
287

o
m.

—98
—98
—27
—o7
-+59

+59
+180
—15
—67
—61

—229
—183
— 146
—140
134

—134
—125
—125
—125
—122

—49
— 2
+46
“+130
+183

+314
+427
+219

+9r1
4122

+192
SR2710
— L30
+46
+485

—090
=37
—30

177
+12

==
+34
=
+27
+244

[
+49
—61

4168

tus 1o = Times of surveys used for velocity determination.
¥,y = Horizontal coordinates of stakes.

z = Vertical coordinate.

u = Horizontal velocity component, resolved parallel to x coordinate.
» = Horizontal velocity component, resolved parallel to y coordinate.

w = Vertical velocity component.

oy = Standard error of u.
ow = Standard error of w.

Z
m.

1,623
1,617
1,627
1,621
1,627

1,620
1,632
1,675
1,735
1,744

1,780
1,778
1,780
1,779

1,768
1,765
1,769
1,773
I5772

1,769
1,756
1,745
1,747
1,750

1,754
19757
1,792
L,777
I5’797

1,789
1,831
1,833
1,842
1,858

1,879
1,879
1,871
1,910

1,936
1,945
1,966
1,967

2,002
2,049
2,043
2,077

u
m./yr.
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Fig. 4. Generalized maps of specific net budget b, 1957-58 to 1963—64. The lines of equal net budget are drawn at intervals
of 2 m. of water equivalent. Each budget year is designated by the year of its close. North is to the top of the page, thus
each glacier terminus is at the top of the map

* A large inconsistency appeared when the net budgets for the period 21 August 1958 to 12 September 1961
were compared with surface lowering determined from map changes during the same period. However, by
calculating drainage-basin storage changes during each ablation season from hydrologic data, it was possible to
locate the magnitude and time of the discrepancy. An unusually high rate of ablation occurred on the glacier
in late August, September and most of October 1958. Surface measurements of net budget in this period were
meager due to few visits to the glacier and loss of most ablation stakes, and one firn layer was misidentified. As a
result, the negative net budget late in the 1958 ablation season was understated. The hydrologic results agree with
the volume-change results. Therefore, the mean specific net budget for 1958 has been changed to agree with the
other results, from —2-2 to —3-3 m. Nye analyzed the preliminary results for the period 1957-61 and adjusted
the net budget and volume-change results equally to compensate for the discrepancy (Nye, 1963[b], p. 111-12).
The most important effect of this adjustment appears in computations of discharge. Nye calculated a maximum
current ice discharge equal to 12-4 X 10° m.3/yr., whereas the more accurate value is about 8-8 x 10° m.3/yr. The
effect of this adjustment on the steady-state discharge (and therefore on the kinematic wave diffusivity) is, however,
negligible, because the variation of net budget with distance was not appreciably changed.
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mean specific net budget for these earlier years (Meier and Post, 1962, p. 70). These estimates
together with estimates of standard errors are given in Table II.

VorumE CHANGES

Changes in thickness of a glacier are caused by variations in velocity and strain in the ice
as well as by changes in net budget. The measurements of changes in glacier thickness reported
here are entirely independent of the measurements of net budget. These volume changes are
expanded into two components. One of these is the amount of ice loss due to terminus recession,
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(a) Variation of specific net budget with altitude, b(z), for the budget years 1957-58 to 1963-64. Each curve is labeled with the
year at the end of the budget year. Shown also is an approximate scale of distance as of 1961 ; this scale must be used with
caution when interpolating variations of b, especially at the lower elevations and for years much before or after 1961

(b) Steady-state net budget as a function of altitude bo(z). Curve 1 represents bo(z) calculated from the average of the seven
budget years 1957—58 through 1963—64. Curve 2 represents bo(2) calculated for the period 21 August 1958 to 12 September
1961. Also shown is the area-altitude distribution S(z). Altitude increments of 20 m. are used. The shaded area on this
illustration represents the area over which ice is usually exposed at the end of an equilibrium or negative budget year. The

remaining area is covered with snow or firn

the calving of ice into the terminus lake and change in glacier area in the vicinity of the
terminus due to narrowing of the glacier tongue. The second component is the change in ice
volume due to changes in elevation of the ice surface over the rest of the area of the glacier.
Except near the terminus, the glacier area is assumed to have remained constant from 1958
to 1964.

Changes in volume in the vicinity of the terminus were determined by mapping the limits
of the glacier at the end of the budget years. Precise vertical aerial photography was available
for the years 1953, 1955, 1958, 1961 and 1964. Oblique aerial photography was available for
all other years from 1955 to 1964 ; most of this oblique photography was taken by Austin 5.
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o1 August 1958 to 12 September 1961 equals a loss of 76X 106 m.3 of ice with a standard

error of about 0-5x 106 m.3.
Similarly, if the specific net budget is b (
a glacier is p, the total volume change, assuming no time ¢

glacier or the surface area, is

measured in water equivalent) and the density of
hange in the mean density of the

T
AM:;fde. (2)

meters / year
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Fig. 6. Longitudinal variation in net budget rate (ice equivalent),
d for the period 21 August 1958 to 12 September 1961

velocity f. Values shown represent averages over width of glacier an

eral, b is measured in regard to a coordinate system traveling with the ice (Lagrangian
is not strictly correct. However, this point is of more

here (the space-averaging of b due to glacier flow is
unimportant). If the time interval of interest is not a single budget year, then b in equation (2)
must be replaced by bqp, the total of b over the time interval from #4 to {p. For a certain budget
year, 7, the net budget b, is the change in mass per unit area, bs, from beginning to end of the
budget year, given by the time integral of the net mass flux (the net budget rate), b (Meier,

1962, p. 254). Thus

In gen
coordinates), so that equation (2)
academic than practical importance

lo 1 ty
bap = bs(to)—bs(ta) = f bdt—}—Zbi~J bt (3)
ta L ln

r1=n

at the intermediate budget values are not

as can be seen from inspection of Figure 7. Note th
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V, plunges at an angle ¢ relative to the original snow surfa

ce. If the surface slope « is constant
from (a) to (b), it follows from Figure 8 that

tan (a4-£) = (FAs-LuAt tan o) [(uAt).
By expanding the left-hand side and combining terms,

u
cot ¢ = tan oa—i-},sec2 .

(4)
The emergence* velocity fis defined as follows (see Fig. 8):
JS=w-utan a+t-wgy. (5)
Thus :
S=h—bjp (6)

* This is called the emergence velocity, in keeping with th
the positive z-axis are considered positive.
negative value.
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where / is the time rate of change of glacier thickness and is b/At. Equations (5) and (6)
express the relation between flow, mass bud
Waq = 0, and equation (5) reduces to the simple expression

S = w-utan «
as discussed in an earlier paper (Meier, 1960, p. 20).

In Table IIT are presented results of a computation usin
on a longitudinal profile of South Cascade Glacier for the budget year 1961-62. In this table
U, w, o, wg and b/p were measured directly, fwas calculated using equation (5a), / calculated
from equation (6) and £ from equation (4). Note that J and b/p almost balanced each other

at P1, so that in spite of a large residual snow pack (1-2m.) the elevation of the surface did
not rise appreciably.

(5a)

TasLE ITI. RErLATION BETWEEN NET BUDGET, EMERGENCE VELOGITY AND Gracier

TrIcKENING AT Four
Locarrons, 1962 BunceT YEAR

Location X u w a waq* J ble h ¢
m. m. m. m./yr.  m./yr. m./yr. m./yr.
Po 2,960  16-5 —1-6 —8.8° 0-00 +o0-9 —9:0 — I -3-0°
Pr 2,015 I-3 —1-9 —4-2° 0-03 —I-1 +1.2 +o-1 —5-2°
P2 1,234 8.2 —1-8 — o0-10f —1.5 +1:7 +0-2  —10-2°
P3 707 L Aeh —2-1 —6-0° 0-15 —1-8 +2-.5 +0-7 —19.9°
* Lr ~ 3.0m. in each case. T Approximate value.

Longitudinal variations of thickness change, net budget and emergence velocity

Values of thickness change, net budget and emergence velocity averaged over the width of
the glacier were calculated for the period 21 August 1958 to 12 September 1961, and plotted
as a function of the distance (x) from the head of the glacier in Figure 6. In this case, /i was
obtained by direct measurement and f calculated from equation (6). Insufficient data are

available on the distribution of z and wg in some areas of the glacier, so f could not be
calculated independently of blp and .

The emergence velocity is, as would be ex
positive in the ablation area. The cr
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, averaged over the width, was calculated for
points 244 m. apart along the length of the glacier from head to terminus, The results (Fig. g)
show that £ is a rather lar

ge negative angle in the upper reaches of the glacier and a similarly
large positive angle in the lowest reaches. The vector, V, plunges downwards from the
horizontal throughout the length of the glacier except within 400 m. of the terminus,

Ice discharge

If the emergence velocity is known at all points on the surface of a valley glacier, then the
ice discharge through vertical cross-sections can be calculated. Consider a fixed cross-section
located at a distance x from the head of a glacier. If the mean density of the glacier does not
change with time, then t i inui

can be written for a given instant of time
as follows:
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Or, from equation (6),
Qs t) = [ Wrds ()
where Q (,1) is the discharge in m.3 (ice) Jyr. at time ! through a fixed cross-section at X,
and W is the glacier width.
It seems proper to use the density of ice in the net budget term blp for time intervals of

following reason: in general, the distribution of density with depth

one year or more for the
below the surface at any fixed point will be approximately constant in time if the density

profile is always measured at the end of 2 budget year. This is an hypothesis similar to Sorge’s
law for polar glaciers. In a steady-state condition an increment of snow of low density is added
to the surface each year. This mass is compensated by an equal mass-increment of ice which
flows out through the fixed cross-section (the mean density of the glacier is close to that of ice).
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Fig. 9 Longitudinal profile showing surface velocily vectors and calculated bedrock profile. Vertical distances are exaggerated
2.5 times. Bedrock profile is calculated on the assumption that @ — @ Surface and bedrock profiles and surface velocity
vectors represent averages taken over the width of the glacier

Even though South Cascade Glacier is not currently in a steady-state condition, these relations
must be approximately true because the process of compaction should proceed at about the
same rate regardless of whether the glacier is in a steady or non-steady condition.

Values of Q calculated using equation (77) are presented in Figure 103 @ =0 at the head
of the glacier and reaches a peak of 8-8% 105 m.3[yr. at x = 2,320 1. The discharge then
decreases almost to zero at the terminus. A slightly positive Q, at the terminus is due to the
discharge of ice into the lake by calving and ‘melting. The discharge per meter of width,
Q[W, is also shown in Figure 10. There is an apparent consistent relation between oW
and % (surface velocity averaged over the width). It should be noted that the O/ W and u

results are entirely independent.

Glacier thickness

The mean thickness, B, of the glacier at each cross-section can be calculated from the
relation Q = uhW, where = is the velocity averaged over both width and depth. However,
determining % exactly is difficult. The known surface velocity is made up of two components:
one is due to the shear deformation within the ice and the other is the sliding velocity of the
glacier on its bed. A minimum value for the mean depth can be computed by assuming that

2

BN




564 JOURNAL OF GLACIOLOGY

u = . This assumption would be realistic if almost all of the velocity were due to sliding on
the bed. The velocity distribution for ice obeying the Glen flow law, flowing in a channel of
parabolic cross-section with the bed slip equal to zero is also such that % =~ u, according to a
recent calculation by Nye (personal communication).

Slightly more precise thickness values might be computed by allowing for the decrease
of velocity with depth. This can be done along the center line if the channel cross-section is
known to approximate certain analytical shapes. However, the channel shape of South
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Fig. 10. Longitudinal variations of discharge and velocity. Q is the actual discharge, Q.|W is the discharge per unit width,
Q.0/Q is the ratio of steady-state discharge to actual discharge, and @ is the surface velocity averaged over the width. The
values of Q. and Q o were calculated using data averaged over the period 21 August 1958 to 12 September 1961

Cascade Glacier is not known, nor is there any obvious way to determine the decrease of
velocity with depth away from the center line. Therefore, this calculation is not attempted here.
It can be shown that the magnitude of the correction is small; nowhere can it exceed about
28 per cent.

A bedrock profile based on the assumption that % — # is shown in F igure 9. Qualitatively,
the profile appears to be reasonable: flat uncrevassed areas occur where the bed profile is
concave upwards; steep crevassed areas overlie convex parts of the bedrock profile. The

maximum thickness (averaged over the width) is about 1 52 m.; the mean thickness for the
whole glacier is about 83 m.

Relation to a steady-state condition

It is instructive to calculate how far the present condition of South Cascade Glacier differs
from a steady state. One way to do this is to compute discharge which would result from a
steady-state condition with the present glacier area and a steady-state net budget. First, a
distribution of steady-state net budget values, bo, must be computed. Actual net budget values
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can be expressed as functions of elevation b(z). The net budget total, B, is obtained by multi-
plying the net budget values, b(z), by the corresponding distribution of area with altitude,
S(z), and summing over the vertical extent of the glacier
B = [ b(2) S(2) dz.

By definition, a steady-state net budget is one in which

Bo = [ bo(2) S(2) dz = ©
(Meier, 1962, p- 2 58). Therefore, 2 distribution of bo(z) can be obtained from any distribution
of b(z) by subtracting B[S from each value of b(z), where § is the total area of the glacier,
because

| [b6(2)—BS] S(z) dz = o.

In Figure 5b, bo(z) and S(z) are graphed as functions of altitude. Curve I shows a bo(2)
calculated from b(z) averaged over the whole period of record (budget years 195758 to
1963-64); curve 2 was computed using b(z) averaged for the period 21 August 1958 to
12 September 1961. Equation (3) was used in the averaging. The two curves are quite similar,
even though the aberrant 1960-61 curve received much greater weight in curve 2.

A similar distribution of steady-state net budget values can be obtained by summing over
horizontal distance down-glacier, ¥, knowing the distribution of net budget, b(x), and area,
S(x), with distance. A curve of bo(x) for the period 21 August 1958 to 12 September 1961 was
used in equation (7) to calculate a steady-state unit discharge Q. o(¥) [W. This curve was
calculated with an assumed discharge at the terminus equal to the present discharge. The
resulting curve has a shape similar to the shape of the present unit discharge curve but the
discharge at any given point is about twice as great. The ratio of Q o/Q.is plotted as a function
of x in Figure 1o. This curve is dashed at the upper end (x < 400 m.), because here the
computation of Qo is sensitive to slight variations in the assumed bo. It is also dashed within

150 m. of the terminus, because the ratio has been arbitrarily forced to equal one at the
terminus. This forcing has no appreciable effect more than 150 m. from the terminus. The
mean ratio of Qo/Q is about 2-2. Nye (1963[b]) also calculated values of Qo His results
differ from these by less than 6 per cent, although he used preliminary data and a different

method of computation.
Although the calculated steady-state discharge of South (Clascade Glacier is about twice

the actual discharge, the calculated steady-state thickness is not twice as great, because
Q = uhW, and the steady-state values 2o, ho and Wo would all be greater than under present
conditions. _From Nye’s analysis (Nye, 1963[b], P- I 12) Uofu = (QofQ)z1 -8; so
oo — 1-16 h, assuming Wo = W. This would suggest that the glacier would have to be
hicker than the present in order to have a steady-state discharge. However,
the analysis is not as simple as this because, if the glacier is made thicker, the surface slope
must change, decreasing the velocity in the upper part of the glacier and increasing it at the
terminus, necessitating increased thickness above and decreased thickness below. The width
of the glacier will be slightly increased and the changed elevation of the glacier surface will
cause the distribution of net budget values to change. Calculation of an internally consistent
steady-state profile of the glacier is laborious, requires many simplifying assumptions and is
not attempted here. However, it appears that the glacier would have to be somewhat less than
16 per cent thicker in order to handle a steady-state distribution of net budget with the present-

day length and area.

about 16 per cent t
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