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CONVERSION FACTORS, VERTICAL DATUM, SYMBOLS,

AND MACHINE-READABLE FILES

Multiply By To obtain

degree Celsius (°C) 1.8, then add 32 degree Fahrenheit
kilogram (kg) 2.205 pound

kilometer (km) 0.6214 mile

kilopascal (kPa) 0.1450 pound per square inch
meter (m) 3.281 foot

millimeter (mm) 0.03937 inch

square kilometer (km?) 0.3861 square mile

Vertical datum:

In this report “sea level” refers to the National Geodetic Vertical Datum of 1929 (NGVD of
1929)--a geodetic datum derived from a general adjustment of the first-order level nets of both
the United States and Canada, formerly called Sea Level Datum of 1929.

Symbols used in this report:

bo

(=,
8
~

w
N’

o S
> =
~~

w

~—’

N X< na

The change in balance between the minimum balance near the beginning of the
water year and October 1.
The change in balance between the minimum balance near the end of the water

year and September 30.

The change in snow, firn, and ice storage between the beginning and end of
some fixed period, which here is the water year.

The snow above the previously formed summer surface as measured directly by
field work in late spring as near as possible to the time of greatest glacier mass.
The change in snow, firn, and ice storage between times of minimum mass.

The maximum of snow mass during the balance year.

River discharge.

River stage.

Approximate east/west position in the local survey net.
Approximate north/south position in the local survey net.
Altitude above sea level.

Machine-readable files:

Most of the data contained in this report have been recorded on easily copied computer media.

University of Colorado, Boulder, CO 80309.



WATER, ICE, AND METEOROLOGICAL MEASUREMENTS AT
SOUTH CASCADE GLACIER, WASHINGTON, 1996 BALANCE YEAR

Robert M. Krimmel

ABSTRACT

Winter snow accumulation and summer snow, firn, and ice melt were measured at South
Cascade Glacier, Washington to determine the winter and net balances Jor the 1996 balance
year. The 1996 winter balance, averaged over the glacier, was 2.94 meters, and the net balance
was 0.10 meter. The winter balance was approximately 0.6 meter greater than the 1977-95
average winter balance (2.30 meters). The net balance, which was posmve for the first time
since 1984, was more than a meter greater than the 1977-95 average net balance (-0.96 meter).
The glacier retreated about 15 meters from its 1995 position. Runoff was measured from the
glacier and an adjacent non-glacierized basin. Air temperature, precipitation, and barometric
pressure were measured nearby. This report makes these data available to the glaciological and
climatological community.

INTRODUCTION

Cocnada Carier jc a crmall vallay glac )
South Cascade Glacier is a small valley glacier near the crest of the North Cascade Range,

Washington State (fig. 1). Numerous variables relating to the glacier regime have been measured
on and near South Cascade Glacier since the late 1950’s. The long-term goal of this project is to
understand the climate- glacier relation. A short-term goal is to document the measurements with
sufficient detail so that an internally consistent record of conditions on and around the glacier can
be assembled despite personnel changes, discontinuous records, and changing methods of data
collection and analysis. Some periods of record at South Cascade Glacier have been documented.
Work from 1957-64 is described by Meier and Tangborn (1965), work from 1965-67 is described
by Meier and others (1971) and by Tangborn and others (1977). Hydrologic and meteorological
data for 1957-67 are presented by Sullivan (1994). Mass balance results are summarized by
Krimmel (1989) for 1958-85, and are presented in detail for 1992-95 (Krimmel, 1993, 1994,
1995, 1996a). The purpose of this report is to document the measurements of the 1996 balance
year that are relevant to the relation between South Cascade Glacier and climate. These
measurements include those of basin runoff, precipitation, air temperature, snow thickness and
density, ice ablation, and surface altitude.

The mass balance program at South Cascade Glacier is part of a larger U.S. Geological
Survey (USGS) effort to monitor glacier mass balance throughout the western states. Mass
balance at two other glaciers, Gulkana Glacier and Wolverine Glacier, both in Alaska, is also
monitored by the USGS. South Cascade Glacier is considered to be a “benchmark glacier” as
described in Fountain and others (1997).



Description and Climate of the Area

South Cascade Glacier is located at the head of the South Fork of the Cascade River, a
tributary to the Skagit River, which flows into Puget Sound about 100 km to the west. The
region is dominated by steep terrain, with relief of more than 1,000 m. Areas in the basin not
covered by glacier ice or water are underlain by bedrock. The bedrock is mantled either by a thin
layer of soil and, in places, by scrub conifer, heather, or other vegetation typical of the high North
Cascade Range, or is covered by glacial moraine or outwash material.

South Cascade Lake Basin has an area! of 6.14 km?, and spans from 1,615 t0 2,518 m
altitude. A sub-basin of the South Cascade Lake Basin is the 4.46 km? Middle Tarn Basin?, which
constitutes the southern two-thirds of the South Cascade Lake Basin. Virtually all icemelt® within
the South Cascade Lake Basin takes place in the Middle Tarn Basin.

Salix Basin (fig. 1), adjacent to the South Cascade Lake Basin, is predominantly south
facing and contains no glacial ice. It has an area* of 0.22 km? and spans from 1,587 to 2,140 m
altitude.

The climate of the region is maritime. Near the glacier, typical winter low temperatures are
about -10°C, and typical summer high temperatures are about 20°C. Most of the precipitation,
which commonly reaches 4.5 m annually (Meier and others, 1971), falls as snow in the period
October to May.

Measurement Systems

Glacier mass balance definitions (Mayo and others, 1972) are adhered to in this report, and
the stratigraphic system, which is more field compatible than the fixed date system, is usually
used. The specific terms are defined where first used. Other mass balance nomenclatures are in
use, notably those described by @strem and Brugman (1991), which could as well be used to
report these results. The definitions by Mayo and others (1972) are used to maintain consistency
with earlier reports on South Cascade Glacier work.

The balance year, defined by Mayo and others (1972) as the interval between the minimum
glacier mass in one year and the minimum glacier mass the following year, is used when
appropriate. The water year (WY) is the interval between October 1 of one year and
September 30 of the following year; it is designated by the calendar year in which it ends. Thus,
this report spans the time from October 1, 1995 through September 30, 1996.

All local geodetic coordinates are in meters, in which the local +Y axis is approximately true
north. Vertical locations are in meters above the Nationai Geodetic Vertical Datum of 1529.
Horizontal locations are defined by a local system that can be converted to Universal Transverse

1 The area of this basin has been previously reported as 6.02 and 6.11 km* These differences are
due to different interpretations of the drainage divide.

2 “Middle Tamn” is an unofficial name.

3 A small, debris-covered area of perennial ice lies outside of the Middle Tarn Basin.

4 Salix Basin drainage divides are poorly defined.



Mercator (UTM) zone 10 coordinates by:
UTM easting = local X (0.99985) + 642,000
UTM northing = local Y (0.99985) + 5,355,000.

Densities are given as a decimal fraction of the density of water, the density of which is
considered to be 1,000 kilograms per cubic meter.

1996 BALANCE YEAR DATA COLLECTION
Recorded Variables

Several variables are measured continuously: in this report, the records of these variables
are truncated to the water year, October 1, 1995 through September 30, 1996. When information
concerning these variables is required, but is outside of the WY, the required data are discussed.
The continuous measurements may be stored on analog recorders, which give a continuous trace
of the variable; on digital recorders, which store either instantaneous values, or for some variables
a value that is averaged over some time interval, or are transmitted to Tacoma, Washington with a
satellite link using a data collection platform (DCP) near the sensors. Some variables are stored

simultaneously on both analog and digital recorders.

Air temperature was measured at the Salix gaging station with a DCP, at the South Fork
gaging station with both a DCP and an analog strip chart recorder, at the Middle Tamn gaging
station with a DCP, and at the Hut (fig. 1) with a digital recorder. Each of these records is shown
graphically (fig. 2). Temperature was sampled once per hour at each station and temperature is
estimated to be accurate to +1°C. Daily maximum (highest of the 24 hourly readings), minimum

(lowest of the 24 hourly readings), and mean temperatures are given in tables 1-4.

Precipitation was measured at Salix and Middle Tarn gaging stations (fig. 3). Tipping
bucket gage catch was accumulated for 1 hour and recorded with a DCP. Both gage orifices
were 200 mm in diameter and neither had wind screens. The precipitation gages are sensitive to
0.024 mm of precipitation. Precipitation is known to vary significantly over short distances,
especially in areas of high relief. Wind is also known to influence the catch of precipitation gages.
These gages were in operation intermittently over the entire year, but no attempt was made to
heat the orifices so that snow would pass to the tipping buckets. No attempt has been made to
correct the measured precipitation for any of these influences. Daily total precipitation gage catch
is given in tables S and 6.

Salix Creek stage was recorded on a DCP and an analog strip chart. The recorders share a
single float-driven stage sensor. South Fork Cascade River stage was digitally recorded, and
recorded on an analog strip chart in an independent well. Middle Tarn stage was recorded with a
DCP and with a digital recorder. The recorders share a single float-driven stage sensor. These
stage records are shown in figure 4. The stage recorders are sensitive to +3 mm and are estimated
to be accurate to £3 mm.

Barometric pressure was recorded at the South Fork gaging station (fig. 2).



Intermittent Measurements

Snow depth and density, snow, firn, ice ablation and river discharge measurements are made
during site visits several times a year. Instruments and facilities are serviced during these visits as

Snow depth was measured by probing at numerous locations on May 24, 1996 (fig. 5, table
7). Snow density was measured with a snow tube along an 8-point snow course near the South
Fork gaging station on May 24, 1996 (table 8) and in a snow pit with a coring auger near P-1

(fig. 1) on May 24, 1996 (table 9). The snow density measurements were used to convert the
snow depths to water equivalent (WE).

Aluminum stakes with wood bottom plugs, 33 mm in diameter, were set into firn or ice on
May 24, 1996 at the stake 2-96, 3-96, 4-96, and 5-96 locations on the glacier (fig. 1). The level
of snow, firn, or ice was recorded at these stake locations several times during the year (table 10,
fig. 6). The stake 1 location (fig. 1) was marked and subsequent snow depths were measured by
probes at the exact location. Stakes 4-95, 2- 95, and 2-94 (fig. 1, table 10) had been set in prior

years, but as the seasonal snow melted were recovered and used as measurement sites in 1996.

Aerial photography provided a record of the condition of the glacier on September 10, 1996
(fig. 7). Stereo aerial photography is used to make measurements of the size and shape of the
glacier, and location of transient snowlines. A digital elevation model (DEM) of the glacier was
formed by photogrammetric measurement of altitude at a regular 100 m spacing over the area of
the glacier. Because it is difficult to make an accurate altitude measurement on a stereo model

when the surface is nearly featureless snow, the 1996 DEM was not changed from the 1995 DEM

in areas where the glac:er was snow-covered’. The DEM, the altitudes of which are estimated to
be accurate to =1 meter, is shown in figure 8 and table 11. The terminus of the glacier (fig. 9)
was delineated from the photographs by measuring the locations of numerous points along the
edge of the feature. The location of the points is estimated to be accurate to +1 meter. The area

Laalaniae vans ¢lan
of the glacier near the end of the 1995 balance year was 2.034 km? (Krimmel, 19962). Assuming

that the area of the glacier south of Y=3,200 m is unchanged since 1995, the area of the glacier
near the end of the 1996 balance year was 2.015 km?. The terminal ice retreated from its 1995
position almost everywhere along the terminus, and the retreat from 1995-96 was subjectively
averaged to be 15 m (fig. 9). The end-of-year snow- and ice-covered area within the South
Cascade Glacier basin was considerably greater in 1996 than in 1995 because more snow
remained at the end of the 1996 balance year. The area of this snow cover was not measured, but
is readily seen by comparing the vertical photographs of the glacier in the respective years (for
example, Krimmel, 1996a, fig. 7).

5In a glacier that is truly in equilibrium, the surface altitude does not change annually because
submergence (in the accumulation area) and emergence (in the ablation area) offset surficial mass
loss and gain. Because South Cascade Glacier gained mass in 1995, the accumulation zone
became thicker between 1995 and 1996, thus using the accumulation zone 1995 DEM in 1996
would introduce a standard error, but probably less than 1 meter. These elevations are not used
directly in the mass-balance computations.



The transient snowline is clearly visible on the October 9, 1996 oblique photograph (cover),
and the position of that transient snowline is shown on figure 1. Because there was little or no
melt after October 9, that snowline is considered to be the equilibrium line. The average altitude
of points spaced at regular intervals along the highest snowline is the equilibrium line altitude,
1901 m. The ratio of the accumulation area to the total glacier area was 0.40 in 1996.

DATA REDUCTION

Salix Creek stage measurements are converted to instantaneous discharge values through
use of a stage-discharge rating equation. Instantaneous discharge values are averaged for each
day and converted to a basin-averaged daily runoff (fig. 10, table 12). The stage-discharge rating
at Salix Creek is controlled by a weir supported by bedrock and no visible changes occurred
during the year, thus the rating curve used to convert stage to discharge was the same that has
been used since the measurements began in 1960:

q=8*"*2.71

where q is discharge in cubic feet per second and S is stage in feet. The Salix well was frozen
briefly in December, and again in January and February, resulting in lost record. (Equations for
the rating curves are given in English units for the convenience of the author and reader, as the
original stage data are in feet and the machine-readable files are in feet. Except in these two

instances, stage has been converted to meters).
South Fork Cascade Runoff

South Fork stage measurements are similarly converted to instantaneous discharge values,
which are averaged for each day and converted to a basin-averaged daily runoff (fig. 10, table 13).
The controlling weir is built on glacial outwash and moraine material and is known to be unstable.
Visual inspection of the weir and surrounding foundation and diversion walls indicated that
changes did occur in 1996, but the two discharge measurements made in 1996 did not justify a
new rating curve for 1996. The rating curve used to convert stage to discharge was that used in

1995.

q=0.0036+562*S-557*8+1474*§’

For stage above 0.86 feet:
q=17.45-43.14*S+4094 *S*-0.90 * §*

The South Fork gage instrumentation failed in early November until mid-February, and
again briefly during May, resulting in lost record. Because of suspected changes in the control
during the year, the errors in the South Fork discharge calculations may be +20 percent of the
calculated daily values.



Middie Tarn Runoff

At Middle Tarn, stage measurements were converted to discharge (fig. 10, table 14), using a
rating equation determined from 14 discharge measurements made between September 8, 1992
and September 16, 1994. The outlet from Middle Tam is a bedrock channeli that does not cnange
therefore, the rating curve is expected to remain stable. For a stage of 0.35 feet and below,

q=S"¥* 25123,
and at a stage above 0.35 feet,
q=2.064-3.673 *S+24.770 * §%.

The Middle Tarn well was frozen from early December until mid-May resulting in lost
record.

Precipitation

The Salix and Middle Tarn precipitation gages were in operation during all of WY 1996.
Incremental precipitation was accumulated for each day, and the daily total precipitation is shown
graphically in figure 3, and in tables 5 and 6.

Middle Tarn and Salix daily total precipitation measurements are cross correlated in figure
11, which indicates that precxpitation is slightly greater at Salix, and that precipitation is often very
d.ﬁ‘erent between the two sites. Salix may only appear to be wetter because it is normaily warmer
at Salix than at Middle Tarn, and rain is more reliably measured than snow. Neither precipitation
measurement site is considered to be necessarily representative because of local variations in
precipitation, the difficulty of measuring precipitation when it is windy, or when the precipitation
OCCurs as snow.

MASS BALANCE
Winter Balance

Weather in May of 1996 was cloudy, with frequent precipitation, and access to the glacier
was difficult. The glacier was visited briefly on May 21, and again on May 24 when most of the
snow measurements were made.

Snow density and depth were measured at the P-1 (fig. 1; 1,842 m altitude) index station; a
pit was dug through the upper 1.34 m of snow, and a coring auger was used below that depth.
The entire snowpack was isothermal. Total snow depth at the density measurement site was 5.90
m, and bulk density was 0.504, for a water equivalent (WE) of 2.98 m. The core was continued
an additional 0.34 m into the previous year’s material, which had a density of 0.89. Stake 2-96
was set into the resulting hole.

Snow density was measured near the South Fork gaging station at the 1,618 m altitude at
three places along a snow course. Average bulk density was 0.55, and the average of eight depth
measurements was 1.52 m, for a WE at the snow course of 0.84 m.



Snow depths were measured at numerous other places on the glacier (fig. 5) using a probe
rod. Probing was easy over the entire glacier and almost no ice layers existed in the 1996
snowpack. The buried 1995 summer surface was unambiguous, and could be identified as an
impenetrable surface under a few centimeters of soft depth hoar. Probe locations were
determined with a non-differential Global Positioning System unit (GPS) coded to allow
maximum resolution of the system. The GPS usually indicated a +20 m error. Altitude of the
probe locations (fig. 5) was recorded by the GPS, and was also measured photogrammetrically (at
the GPS-derived location) on the 1995 stereo models. The GPS and stereo model-derived
altitudes always agreed within 10 m, and the stereo model altitudes were used for balance

calculations.

The measured snow depths were plotted with their respective altitudes (fig. 12), and a curve
was hand-drawn through those measured points. Points along the hand-drawn curve (table 15)
were used to mterpolate a snow depth at each of the 201 grid points of the 1995 DEM. A linear
relation between the two measured densities was used to determine the density at each DEM grid

point, which, when mu1t1phed by the snow depth was the balance at the grid point. The average
of the erid w balance. b..(s). 2.94 m WE

O1 uic g 1 , 2m\S), .74 M WX

The maximum winter snow balance for 1996 was assumed to be equal to the winter snow
balance measured during late May, b, (s). Often, winter snow balance is adjusted by considering
spring runoff, temperature, and precipitation, but snow conditions during spring 1996 indicated
that such an adjustment was unnecessary.

Net Balance

Nn Cantamhar 10 1004
1770
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accumulation area (fig. 13). Ablation continued after September 10, and these measurements
were adjusted to a minimum balance value (table 10) at each point using measurements at stakes
1, 2 and 4 on October 9, 1996, when there was no fresh snow on the glacier. The final visit to the
glacier in 1996 was on October 30 after up to a meter of fresh snow covered the glacier.
Measurements to the summer ablation surface on October 30 indicated that very little ablation
took place after October 9. The minimum balance values are plotted against their respective
altitudes (fig. 14). A hand-drawn smoothed curve through the points was used to develop a table
for interpolating balance at any altitude (table 16). The grid-index method used for the winter
balance calculation and in prior South Cascade baiance reports (Krimmel 1996b) is aiso used to
calculate the 1996 balance year net balance, b., for South Cascade Glacier of 0.10 m.

Balance Year to Water Year Adjustments

The final balance increment, b1, for the 1995 balance year was estimated at -0.05 m WE
(Krimmel, 1996a). This value is the initial balance increment, bo, of the 1996 balance year.

Above-freezing temperatures dominated in early October 1996. Rain fell on October 4-5,
then dry mild conditions dominated until October 11. Rain began on October 11, and by October
13 below-freezing temperatures were recorded at all stations, and snow covered the entire glacier.



The storm of October 11-15, 1996 ended the 1996 balance year. The last balance measurements
of the 1996 balance year were on October 9, 1996. Ablation between October 1 and 11 was
estimated from the precipitation, temperature and runoff records to have averaged 0.15 m over

.
the glacier area. The final balance increment, b, is thus -0.15 m.

The annual balance, I_)., is defined by Mayo and others (1972) as the change in snow, firn,
and ice storage between the beginning and end of a fixed period, which here is the water year.

The measured values of 4o, 1, and b. at South Cascade Glacier for the 1996 balance year can be
used to derive the annual balance, 5;, where bs = bn + by - b1 =0.20 m.

Balance Measurements Errors

Errors in glacier balance measurements are difficult to quantify. In prior years of balance
measurements at South Cascade Glacier, error values ranging around 0.10 m were placed on the
balance values (Meier and others, 1971). For 1965 and 1966, more information was used to
derive the balances than in 1992-96. The availability of less information in 1996 would suggest
that greater errors should be assigned to the 1996 balance. This relative paucity of data for 1996
is offset somewhat, however, by the experience gained since the mid-1960's, when 20-30 ablation
stakes were used and it was found that spatial variations in balance were similar from year to year

(Meier and Tangborn, 1965). Estimated errors are b (), bx(s), and B, +0.20 m; bo and b1,

+0 05 m: and the calenlated error for b. is+021 m Althougoh other factors that affect the
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balance, such as internal accumulation of ice, superimposed ice, internal melt, and basal melt, are
possible, they are not considered in this report. These unknowns are thought to be small and do
not change the error estimations.

CONCLUSIONS

In 1996, South Cascade Glacier had a positive net balance for the first time since 1984,
though the 0.10 m net balance cannot by itself be construed as a reversal of the trend of negative
balances beginning in 1977. The balance record since 1958 (figs. 15 and 16) shows a long-term
negative trend, except for a few years in the early to mid-1970’s, when there were several strong
positive years. After 1976, nearly all years have shown mass loss. The 1996 winter balance was
0.6 m greater than the 1977-95 average winter balance of 2.30 m, and the 1996 net balance was
1.0 m greater than the 1977-95 average net balance of -0.96 m, suggesting that the summer of
1996 was the dominating influence toward a “healthy” glacier. Despite the positive net balance,
the glacier retreated about 15 m between 1995 and 1996.
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PRECIPITATION, IN MILLIMETERS PER DAY
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FIGURE 3. Daily precipitation (gage catch) near South Cascade Glacier during the 1996 water year.
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LOCALY, IN METERS
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FIGURE 5. Snow depths, in meters, on South Cascade Glacier on May 24, 1996.
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»

Figure 7. Vertical photograph of South Cascade Glacier, September 10, 1996. The maximum width of
the glacier is about 1 kilometer, north is approximately up. Mosaic of photographs 96V1-133 and 134.
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FIGURE 8. Altitude grid for South Cascade Glacier, measured from stereo vertical photographs taken on
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September 10, 1996 (north of dashed line) and September 12, 1995 (south of dashed line).
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FIGURE 9. South Cascade Glacier terminus positions for September 12, 1995, and September 10, 1996.
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RUNOFF, IN MILLIMETERS PER DAY
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MIDDLE TARN PRECIPITATION, IN MILLIMETERS
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FIGURE 11. Middle Tarn and Salix precipitation for the
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FIGURE 12. Snow depth as a function of altitude at South Cascade
Glacier, May 24, 1996. Solid circles are measured, open circles are
points along a hand-drawn curve used for interpolation.
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TABLE 7. Snow depths at South Cascade Glacier, May 24, 1996

[Depths, in meters (m) measured with a probe rod; X, Y, and Z are local coordinates, £10 meters]

Snow Snow Snow Snow
X Y Z depth| X Y Z depth| X Y Z depth| X Y Z  depth
(m) (m) (m) (m)

2851 1803 2074 6.59 | 2128 2043 1952 6.12 | 2126 2743 1853 5.10 | 1648 3088 1811 3.97
2788 1731 2065 6.61 | 2097 2122 1945 6.28 | 1851 2684 1856 5.78 | 1630 3155 1793 3.22
2721 1694 2057 6.86 | 2061 2192 1939 6.26 | 1785 2673 1859 6.00 | 1619 3223 1770 5.09
2650 1662 2052 6.79 | 2043 2249 1932 5.75 | 1722 2670 1860 6.01 | 1637 3290 1750 4.36
2571 1645 2044 729 | 2006 2320 1923 6.42 | 1654 2662 1861 6.27 | 1673 3352 1733 4.12
2494 1668 2036 7.02 | 1983 2394 1910 5.78 | 1882 2739 1849 5.70 | 1707 3358 1732 3.40
2427 1709 2028 7.68 | 1964 2465 1883 6.83 | 1846 2781 1848 5.50 | 1732 3412 1715 4.82

ko Jo ¥ 4o J 1"7TAQ HAN17Y o NN 108N NE2A 10771 £ 18 10N0 HM0NL 1040 & &N 177L£A QAA7T
£LI21 17140 4LVl o.Uv 179U L2394 10/1 V.10 10UT LOLL 1040 J.IV 1709 J94%/ 1695 3.96

2289 1792 2006 6.40 | 1933 2611 1862 5.60 | 1773 2871 1842 5.65 | 1792 3488 1681 3.02
2232 1847 1993 6.99 | 1925 2691 1853 573 | 1737 2918 1839 5.80 | 1814 3534 1669 1.96
2188 1903 1975 6.95 | 1991 2712 1847 5.61 | 1702 2970 1832 5.38 | 1820 3582 1660 1.15
2153 1969 1961 6.45 | 2057 2731 1849 528 | 1672 3027 1823 5.73 | 1827 3644 1642 1.03

TABLE 8. Snow density at 1,618 TABLE 9. Snow density on South Cascade
meters altitude, in South Cascade Glacier, at 1,842 meters altitude, May 24, 1996

Glacier Basin, May 24, 1996
[Measured in a snow pit, through the entire thickness

[Measured with a snow tube that of the snow, at local X = 1922, Y = 2699, Z = 1842
penetrated the entire snowpack in one meters. Diameter of snow tube used in pit = 0.0723
sample. The distance between sample meters, of coring augur = 0.0763 meters]
locations was about 15 m. WE, water
equivalent] Sample
. bottom Sample
Sample Depth WE depth length Mass Density
(meters) (meters) (meters) (meters) (kilograms)
East end 1.80 0.97 0.45 0.45 0.765 041
2 2.03 1.17 .90 45 .760 41
3 1.70 91 1.34 44 815 45
4 1.30 — Begin using coring auger
5 1.32 — 1.82 48 1.060 48
6 1.50 -— 2.13 31 .615 43
7 1.42 — 2.30 17 .385 .50
West end 1.09 —— 237 .07 250 78
Average depth=1.52 m 2.56 19 410 47
Average WE=0.84m 2.82 26 575 A48
Average density = 0.55 2.88 .06 175 .64
3.86 .86 2.045 .53
4.40 .62 1.515 .54
4.98 .58 1.565 .55
5.59 .61 1.580 .52
5.90 17 460 .60

Total water equivalent = 2.98 meters
Average density = 0.504
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TABLE 10. Stake and late season core measurements at South Cascade Glacier in the
1996 balance year

[Surface material may be snow (s) or ice (i); density estimate based on interpolation between measurements
made in early May. Balance is the gain or loss of material, referenced to the previous year's melt horizon, in
water content. Local X, Y, and Z coordinates (in meters) given for each stake. 1996 stake locations shown

on fig. 1. Core locations shown on fig. 13]

Date Surface Depth Density Balance Date Surface Depth Density Balance
material (meters) (meters) material (meters) (meters)
Stake 1 [X =2857, Y = 1779, Z =2068] Stake 5-96 [X =1715, Y =3484, Z=1679]
May 24 s 6.59 0.50 3.30 June 14 s 2.23 0.55 1.23
June 14 s 5.96 .53 3.16 July 15 5 .20 .57 A1
July 15 s 4.70 .57 2.68 Sept. 10 i -3.98 .90 -3.58
Sept. 10 s 2.00 .60 1.20 Minimum i -4.79 .90 -4.31
Oct. 9 s 1.57 .60 94
Minimum#* s 1.57 .60 .94 Stake 2-94 [X=1812, Y =2812, Z = 1833]
Minimum i -0.23 0.90 -0.21
Stake 2-96 [X =1922, Y = 2699, Z =1842]
May 24 s 5.90 0.50 2.95 Stake 2-95 [X = 1816, Y = 2891, Z = 1828]
June 14 s 5.11 .53 271 Minimum i -0.03 0.90 -0.03
July 15 s 3.51 .57 2.00
Sept. 10 s .55 .60 .33 Core [X=2403Y = 1706, Z = 2024]
Oct. 9 i .00 .90 .00 Minimum s .68 0.60 1.61
Minimum i .00 .90 .00
Core [X=2198,Y =1816, Z= 1998]
Stake 3-96 [X = 1688, Y = 3302, Z =1741] Minimuim s 1.81 0.60 1.09
May 24 s 3.96 0.51 2.02
June 15 s 3.06 .55 1.68 Core [X=2087,Y =2020,Z=1957]
Sept. 10 i -2.35 .90 -2.12 Minimum s 1.00 0.60 0.60
Mimimum i -2.92 .90 -2.63
Core [X=1994,Y=2418 Z=1911]
Stake 4-95 [X=1831, Y = 3636, Z=1627] Minimum s 0.87 0.60 0.52
May 21 s 1.15 0.53 0.61
June 14 s .19 .55 .10
Stake 4-96 [X = 1842, Y = 3585, Z = 1636]
June 14 i 0.00 0.90 0.00
July 15 i -1.98 .90 -1.78
Sept. 10 i -6.14 .90 -5.53
Oct. 9 i -6.96 .90 -6.26
Minimum i -7.16 .90 -6.44

* Minimum level of material at each stake was determined by measuring the level of the summer surface on
October 30, 1996, after the snow accumulation began.
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TABLE 11. South Cascade Glacier altitude grid, September 10, 1996

[Surface altitude (Z), in meters above National Geodetic Vertical Datum of 1929, was measured near the

nominal point for each grid cell. Coordinates X and Y are local. The tenths of meters are marginally

significant. Grid points with an * are from the 1995 altitude grid]

X Y Z X Y Y4 X Y Y4 X Y Z
1670.2 3700.0 1637.8 1770.0 2899.8 1841.2 *1870.7 24004 1895.5 *2172.0 1800.7 1991.6
1669.8 3599.1 1662.0 1569.5 2899.4 18435 *1769.4 2401.1 18915 *2270.6 1799.2 2006.1
17706 3599.6 1651.4 1569.9 27999 18508 *1669.8 23988 1889.3 *2370.8 1802.6 2020.1
1870.2 3599.3 1635.7 1869.8 2799.7 18468 *1571.6 2401.1 1896.2 *2470.4 1799.0 20284
1869.8 3500.6 1656.5 1968.8 2798.0 18458 *1571.9 23008 19274 *2571.9 17994 2037.6
1769.4 34996 1677.1 2070.6 2798.7 18425 *1670.9 23019 19087 *2671.1 18019 20548
1668.4 3499.0 16903 2169.9 27996 1836.6 *1771.1 23006 1902.0 *2770.8 1798.2 2067.0
1571.2 3500.5 1677.8 2269.8 2799.7 18384 *1869.7 2300.7 1908.6 *2871.9 1799.7 2080.1
1569.7 33998 17179 2369.8 2699.1 18717 *1970.7 23006 1923.2 *2970.9 18004 2077.0
1669.9 33996 1718.6 2068.2 2699.9 18482 *2070.0 23003 19279 *3069.4 17989 2081.9
1770.0 3399.7 17045 1869.3 2700.1 18526 *2171.1 23009 19315 *3169.6 17994 2091.6
1869.3 3399.5 1676.9 17712 26993 18575 *2271.1 23016 19414 *31683 1700.8 2120.7
20706 3399.2 1702.1 16702 2699.5 1858.5 *2370.4 2301.1 19443 *3070.5 17015 2100.8
2169.4 3299.0 1728.6 1569.3 2599.5 18659 *2469.8 23009 1957.6 *2968.7 1699.1 2079.9
2070.2 3300.0 17357 2269.0 2599.0 1890.1 *2569.6 23012 2005.2 *2871.4 17024 20770
1970.4 33003 1739.0 2169.0 24999 1900.6 *24729 22012 19634 *2770.7 1701.2 2063.6
17703 3299.2 1737.1 *1472.0 2899.7 18489 *2371.1 2200.1 19522 *26709 1700.1 2050.0
1670.2 33004 1744.6 *1671.5 2901.7 1843.0 *2271.0 21985 19493 *2570.1 1701.4 2035.7
1569.5 3300.0 17473 *2369.7 28989 18424 *2171.2 21987 1942.0 *2469.7 1700.1 2031.6
1470.8 32978 17523 *2371.9 27958 18553 *2068.2 22005 19375 *2368.5 17007 20254
1470.8 3199.7 1780.8 *1771.5 27988 18489 *1970.0 21999 1930.0 *2269.7 16999 2014.0
1569.7 31995 1775.7 *1670.1 2798.7 1850.7 *1869.5 2200.7 1920.7 *2171.2 1698.8 2004.1
1669.8 31998 1779.0 *1472.4 27987 1861.5 *1770.0 2200.0 1930.4 *2069.7 17013 1998.0
17699 31999 1790.0 *1469.2 27006 18717 *1669.3 22000 1930.5 *1971.0 1698.8 2007.7
18696 31995 17993 *1571.6 27015 18591 *17689 20999 19432 *2071.0 16006 20285
1968.7 3199.1 1799.7 *1969.9 27003 1851.7 *1872.0 2099.1 1943.0 *2170.0 1601.0 2019.4
2068.8 3199.7 1780.5 *2171.2 2701.5 1848.1 *1969.5 2099.0 1942.7 *2270.6 1600.5 2022.2
2169.2 3199.0 17721 *2271.0 26995 1859.7 *2070.5 2100.8 1945.5 *2370.4 1599.4 20275
2269.1 3099.2 1793.0 *2370.9 2601.0 1902.4 *2170.5 2098.8 19502 *2470.4 1599.8 20383
21693 3099.9 18135 *2169.0 26002 18716 *2270.9 20984 1953.4 *25709 15992 20455
2070.1 3100.2 1821.8 *2070.1 26012 1862.2 *2569.8 2097.9 2000.9 *2670.1 16003 20563
1971.0 3099.6 1825.7 *1969.9 2601.0 1861.7 *2469.7 2101.7 1970.8 *2769.1 16013 2070.3
1870.0 3099.3 1824.6 *1870.2 2599.8 1864.6 *2371.8 20983 19581 *2869.6 1601.3 2081.8
1770.8 3099.5 1816.5 *1769.7 2599.4 18674 *1871.5 2000.1 1966.0 *2972.2 1602.7 2099.4
1669.2 30986 1809.1 *1671.3 2599.0 18688 *1969.6 20003 1959.6 *3069.5 1602.8 2125.1
1570.4 3100.0 1808.0 *1470.7 2499.7 1898.6 *2070.4 20012 1959.2 *2872.6 14982 21009
1470.1 3099.5 18134 *1571.0 2501.2 1879.6 *2169.4 20005 1956.8 *2770.6 15006 2075.0
1469.7 2999.7 1836.9 *1670.1 25006 1878.8 *22709 1999.1  1956.7 *2671.3 1501.0 2064.8
1569.9 29994 18276 *1771.6 2499.0 18779 *23703 20003 19672 *2571.9 1501.6 2050.2
1669.7 2999.7 1827.1 *1870.7 25003 1877.8 *2470.6 20024 19817 *2470.9 1499.6 2046.1
1769.2 3001.4 1831.4 *1969.6 2500.0 1880.7 *2470.8 1899.6 2008.1 *2369.9 1501.0 2036.5
1868.7 2999.5 1838.1 *2070.1 2500.0 1885.7 *2369.8 1901.0 1992.1 *22723 14983 20377
1969.6 2999.1 1837.4 *2271.6 24993 19142 *2271.9 1900.0 1984.9 *2168.6 14972 20427
2069.6 2998.7 1835.0 *2369.6 2499.6 1926.1 *2170.1 1901.8 1972.1 *22709 13999 2074.8
2169.8 2999.0 1829.4 *2470.6 2400.0 1961.4 *2068.3 1901.4 1970.6 *2371.7 1400.6 2060.3
2270.1 29993 18288 *2371.5 24012 19419 *1969.5 18979 1974.5 *2471.7 14009 20552
22702 2901.5 1830.5 . *2269.1 24015 19318 *1868.1 1900.8 198954 *2565.1 14006 2059.4
21693 2899.0 18373 *21699 24012 1917.1 *1869.4 1800.1 2007.4 *2670.4 1400.6 2089.2
2068.5 28999 1840.0 *2070.5 24013 1910.7 *1970.1 1801.7 19953 *2771.1 1401.1 2109.9
1971.3 28999 18444 *1969.1 2399.6 1907.2 *2070.0 1800.2 1983.8
1870.4 29009 1843.1
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TABLE 14. Runoff at Middle Tarn Basin, 1996 water year

[Daily values in millimeters, averaged over the basin. A -99.0 indicates no data]

DAY Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept.
1 234 87 303 -990 -990 -99.0 -99.0 -99.0 34 244 246 200
2 381 85 364 -990 -99.0 -990 -99.0 -99.0 11.1 307 291 16.2
3 363 82 -990 -99.0 -990 -99.0 -99.0 -99.0 236 351 267 166
4 207 83 -990 -99.0 -990 -99.0 -990 -990 228 356 264 123
5 172 86 -99.0 -99.0 -99.0 -55.0 -99.0 -990 210 224 354 8.8
6 159 83 -99.0 -990 -990 -99.0 -99.0 -99.0 227 187 205 7.9
7 147 208 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 292 243 204 223
8§ 159 1188 -99.0 -99.0 -99.0 -990 -99.0 -99.0 269 36.1 235 464
9 147 624 -99.0 -990 -990 -99.0 -990 -99.0 209 338 276 263

10 31.3 392 -99.0 -99.0 -99.0 -990 -990 -990 156 268 345 215
11 177 349 -99.0 -99.0 -99.0 -990 -990 -99.0 144 338 353 258
12 134 216 -990 -990 -990 -990 -990 160 13.1 421 278 273
13 136 416 -99.0 -990 -990 -990 -990 205 143 502 273 25.0
14 334 730 -99.0 -990 -990 -990 -99.0 196 163 505 320 226
15 350 502 -990 -99.0 -990 -990 -990 183 174 512 282 18.0
16 444 358 -99.0 -99.0 -990 -990 -990 167 167 456 225 101
17 388 320 -99.0 -950 -990 -990 -990 188 129 344 185 7.2
18 264 388 -99.0 -99.0 -990 -99.0 -99.0 176 99 225 138 6.1
19 186 234 -990 -990 -99.0 -99.0 -99.0 14.7 82 187 122 118
20 160 194 -99.0 -990 -99.0 -99.0 -99.0 134 89 156 16.7 83
21 142 166 -99.0 -99.0 -99.0 -990 -990 132 109 166 164 6.2
22 125 265 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 123 288 150 49
23 116 57.5 -99.0 -99.0 -99.0 -99.0 -990 -99.0 126 370 216 39
24 11.0 430 -99.0 -99.0 -99.0 -99.0 -99.0 70 144 452 239 34
25 113 274 -990 -990 -990 -99.0 -99.0 71 160 386 266 31
26 13.1 208 -99.0 -99.0 -99.0 -99.0 -99.0 86 173 365 316 5.0
27 109 175 -990 -990 -99.0 -99.0 -99.0 85 169 413 305 7.9
28 101 364 -99.0 -99.0 -99.0 -99.0 -99.0 63 18.7 478 347 7.7
29 96 1244 -990 -99.0 -99.0 -99.0 -99.0 50 174 506 399 8.8
30 9.5 516 -99.0 -99.0 -99.0 -99.0 39 188 430 437 104
31 9.0 -99.0 -99.0 -99.0 3.3 31.2 422

SUM 608.4 1084.2 -- -- -- - - -- 484.5 1068.6 828.6 4219
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TABLE 15. Values used to TABLE 16. Values used to

interpolate snow depth at any interpolate net balance at any
altitude on South Cascade altitude on South Cascade
Glacier, 1996 [values in meters] Glacier, 1996 [values in meters]
Altitude Snow depth Altitude Net balance
1629 0.4 1628 -6.92
1644 1.2 1643 -6.27
1.8 1657 -5.63
1679 2.6 1672 -4.97
1703 32 1688 -4.35
1730 3.9 1705 -3.67
1761 4.6 1720 -3.06
1801 52 1738 -2.44
1851 58 1757 -1.84
1904 6.3 1778 -1.22
1965 6.7 1805 -.60
2025 7.0 1839 -.06
2093 7.4 1886 41
2154 7.6 1942 .78
2001 1.05
2065 1.28
2127 1.44
2190 1.57
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